Back to Search Start Over

β‐catenin regulates FOXP2 transcriptional activity via multiple binding sites.

Authors :
Richter, Gesa
Gui, Tianshu
Bourgeois, Benjamin
Koyani, Chintan N.
Ulz, Peter
Heitzer, Ellen
Lewinski, Dirk
Burgering, Boudewijn M. T.
Malle, Ernst
Madl, Tobias
Source :
FEBS Journal; May2021, Vol. 288 Issue 10, p3261-3284, 24p
Publication Year :
2021

Abstract

The transcription factor forkhead box protein P2 (FOXP2) is a highly conserved key regulator of embryonal development. The molecular mechanisms of how FOXP2 regulates embryonal development, however, remain elusive. Using RNA sequencing, we identified the Wnt signaling pathway as key target of FOXP2‐dependent transcriptional regulation. Using cell‐based assays, we show that FOXP2 transcriptional activity is regulated by the Wnt coregulator β‐catenin and that β‐catenin contacts multiple regions within FOXP2. Using nuclear magnetic resonance spectroscopy, we uncovered the molecular details of these interactions. β‐catenin contacts a disordered FOXP2 region with α‐helical propensity via its folded armadillo domain, whereas the intrinsically disordered β‐catenin N terminus and C terminus bind to the conserved FOXP2 DNA‐binding domain. Using RNA sequencing, we confirmed that β‐catenin indeed regulates transcriptional activity of FOXP2 and that the FOXP2 α‐helical motif acts as a key regulatory element of FOXP2 transcriptional activity. Taken together, our findings provide first insight into novel regulatory interactions and help to understand the intricate mechanisms of FOXP2 function and (mis)‐regulation in embryonal development and human diseases. Database: Expression data are available in the GEO database under the accession number GSE138938. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1742464X
Volume :
288
Issue :
10
Database :
Complementary Index
Journal :
FEBS Journal
Publication Type :
Academic Journal
Accession number :
150338802
Full Text :
https://doi.org/10.1111/febs.15656