Back to Search Start Over

Interpretable survival prediction for colorectal cancer using deep learning.

Authors :
Wulczyn, Ellery
Steiner, David F.
Moran, Melissa
Plass, Markus
Reihs, Robert
Tan, Fraser
Flament-Auvigne, Isabelle
Brown, Trissia
Regitnig, Peter
Chen, Po-Hsuan Cameron
Hegde, Narayan
Sadhwani, Apaar
MacDonald, Robert
Ayalew, Benny
Corrado, Greg S.
Peng, Lily H.
Tse, Daniel
Müller, Heimo
Xu, Zhaoyang
Liu, Yun
Source :
NPJ Digital Medicine; 5/10/2021, Vol. 4 Issue 1, p1-13, 13p
Publication Year :
2021

Abstract

Deriving interpretable prognostic features from deep-learning-based prognostic histopathology models remains a challenge. In this study, we developed a deep learning system (DLS) for predicting disease-specific survival for stage II and III colorectal cancer using 3652 cases (27,300 slides). When evaluated on two validation datasets containing 1239 cases (9340 slides) and 738 cases (7140 slides), respectively, the DLS achieved a 5-year disease-specific survival AUC of 0.70 (95% CI: 0.66–0.73) and 0.69 (95% CI: 0.64–0.72), and added significant predictive value to a set of nine clinicopathologic features. To interpret the DLS, we explored the ability of different human-interpretable features to explain the variance in DLS scores. We observed that clinicopathologic features such as T-category, N-category, and grade explained a small fraction of the variance in DLS scores (R<superscript>2</superscript> = 18% in both validation sets). Next, we generated human-interpretable histologic features by clustering embeddings from a deep-learning-based image-similarity model and showed that they explained the majority of the variance (R<superscript>2</superscript> of 73–80%). Furthermore, the clustering-derived feature most strongly associated with high DLS scores was also highly prognostic in isolation. With a distinct visual appearance (poorly differentiated tumor cell clusters adjacent to adipose tissue), this feature was identified by annotators with 87.0–95.5% accuracy. Our approach can be used to explain predictions from a prognostic deep learning model and uncover potentially-novel prognostic features that can be reliably identified by people for future validation studies. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23986352
Volume :
4
Issue :
1
Database :
Complementary Index
Journal :
NPJ Digital Medicine
Publication Type :
Academic Journal
Accession number :
150235333
Full Text :
https://doi.org/10.1038/s41746-021-00427-2