Back to Search Start Over

Extracellular Vesicles from Child Gut Microbiota Enter into Bone to Preserve Bone Mass and Strength.

Authors :
Liu, Jiang‐Hua
Chen, Chun‐Yuan
Liu, Zheng‐Zhao
Luo, Zhong‐Wei
Rao, Shan‐Shan
Jin, Ling
Wan, Teng‐Fei
Yue, Tao
Tan, Yi‐Juan
Yin, Hao
Yang, Fei
Huang, Fei‐Yu
Guo, Jian
Wang, Yi‐Yi
Xia, Kun
Cao, Jia
Wang, Zhen‐Xing
Hong, Chun‐Gu
Luo, Ming‐Jie
Hu, Xiong‐Ke
Source :
Advanced Science; 5/5/2021, Vol. 8 Issue 9, p1-19, 19p
Publication Year :
2021

Abstract

Recently, the gut microbiota (GM) has been shown to be a regulator of bone homeostasis and the mechanisms by which GM modulates bone mass are still being investigated. Here, it is found that colonization with GM from children (CGM) but not from the elderly (EGM) prevents decreases in bone mass and bone strength in conventionally raised, ovariectomy (OVX)‐induced osteoporotic mice. 16S rRNA gene sequencing reveals that CGM reverses the OVX‐induced reduction of Akkermansia muciniphila (Akk). Direct replenishment of Akk is sufficient to correct the OVX‐induced imbalanced bone metabolism and protect against osteoporosis. Mechanistic studies show that the secretion of extracellular vesicles (EVs) is required for the CGM‐ and Akk‐induced bone protective effects and these nanovesicles can enter and accumulate into bone tissues to attenuate the OVX‐induced osteoporotic phenotypes by augmenting osteogenic activity and inhibiting osteoclast formation. The study identifies that gut bacterium Akk mediates the CGM‐induced anti‐osteoporotic effects and presents a novel mechanism underlying the exchange of signals between GM and host bone. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21983844
Volume :
8
Issue :
9
Database :
Complementary Index
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
150145035
Full Text :
https://doi.org/10.1002/advs.202004831