Back to Search Start Over

Palladium oxide-decorated mesoporous silica on graphene oxide nanosheets as a heterogeneous catalyst for the synthesis of β-substituted indole derivatives.

Authors :
Sah, Digvijay
Shabir, Javaid
Surabhi
Gupta, Padmini
Mozumdar, Subho
Source :
Dalton Transactions: An International Journal of Inorganic Chemistry; 4/28/2021, p5644-5658, 15p
Publication Year :
2021

Abstract

In this work, an efficient and facile strategy has been adopted for the stepwise synthesis of the RGO–MSiO<subscript>2</subscript>/PdO hybrid nanomaterial (HY-NM). Herein, a hybrid nanostructure of mesoporous silica over graphene oxide (GO) sheets has been developed followed by immobilizing palladium oxide nanoparticles (PdO NPs), and then it has been utilized for catalyzing a multicomponent reaction (MCR). To authenticate the successful synthesis of the HY-NM and successive immobilization of PdO NPs, various physicochemical characterization techniques were utilized such as SEM, EDAX, HR-TEM, HR-XRD, TGA, BET, FT-IR, and XPS analysis. The activity of the HY-NM has been determined by performing the catalyst-mediated synthesis of β-substituted indole derivatives (yield 90–98%). The excellent catalytic activity of the prepared HY-NM could be observed due to its high surface area and large porosity, which facilitates the penetration and interaction of reactant molecules with the catalytic active species. This protocol eliminates the requirement of further purification after the isolation of the product from the reaction mixture. The ease of handling, recyclability of the catalyst, and simple work-up procedure are the main features of this protocol. The synthesized HY-NM could be recycled for multiple catalytic cycles making it a very effective heterogeneous catalyst. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14779226
Database :
Complementary Index
Journal :
Dalton Transactions: An International Journal of Inorganic Chemistry
Publication Type :
Academic Journal
Accession number :
150036737
Full Text :
https://doi.org/10.1039/d1dt00408e