Back to Search Start Over

Tailoring c‐Axis Orientation in Epitaxial Ruddlesden–Popper Pr0.5Ca1.5MnO4 Films.

Authors :
Hoffmann‐Urlaub, Sarah
Ross, Ulrich
Hoffmann, Jörg
Belenchuk, Alexandr
Shapoval, Oleg
Roddatis, Vladimir
Ma, Qian
Kressdorf, Birte
Moshnyaga, Vasily
Jooss, Christian
Source :
Advanced Materials Interfaces; 4/9/2021, Vol. 8 Issue 7, p1-7, 7p
Publication Year :
2021

Abstract

Interest in layered Ruddlesden–Popper (RP) strongly correlated manganites of Pr0.5Ca1.5MnO4 as well as in their thin film polymorphs is motivated by the high temperature of charge orbital ordering above room temperature. The c‐axis orientation in epitaxial films is tailored by different SrTiO3 (STO) substrate orientations and CaMnO3 (CMO) buffer layers. Films on STO(110) show in‐plane alignment of the c‐axis parallel to the [100] direction. On STO(100), two possible directions of the in‐plane c‐axis lead to a mosaic like, quasi 2D nanostructure, consisting of RP, rock‐salt, and perovskite blocks. With the CMO buffer layer, Pr0.5Ca1.5MnO4 epitaxial films with c‐axis out‐of‐plane are realized. Different physical vapor deposition techniques as ion beam sputtering, pulsed laser deposition and metalorganic aerosol deposition are applied in order to distinguish effects of growth conditions from intrinsic epitaxial properties. Despite their very different growth conditions, surface morphology, crystal structure, and orientation of the thin films reveal a high level of similarity as verified by X‐ray diffraction, scanning, and high resolution transmission electron microscopy. For different epitaxial relations stress in the films is relaxed by means of modified interface chemistry. The charge ordering in the films occurs at a temperature close to that expected in bulk material. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21967350
Volume :
8
Issue :
7
Database :
Complementary Index
Journal :
Advanced Materials Interfaces
Publication Type :
Academic Journal
Accession number :
149731389
Full Text :
https://doi.org/10.1002/admi.202002049