Back to Search Start Over

Direct observation of nanoscale dynamics of ferroelectric degradation.

Authors :
Huang, Qianwei
Chen, Zibin
Cabral, Matthew J.
Wang, Feifei
Zhang, Shujun
Li, Fei
Li, Yulan
Ringer, Simon P.
Luo, Haosu
Mai, Yiu-Wing
Liao, Xiaozhou
Source :
Nature Communications; 4/7/2021, Vol. 12 Issue 1, p1-7, 7p
Publication Year :
2021

Abstract

Failure of polarization reversal, i.e., ferroelectric degradation, induced by cyclic electric loadings in ferroelectric materials, has been a long-standing challenge that negatively impacts the application of ferroelectrics in devices where reliability is critical. It is generally believed that space charges or injected charges dominate the ferroelectric degradation. However, the physics behind the phenomenon remains unclear. Here, using in-situ biasing transmission electron microscopy, we discover change of charge distribution in thin ferroelectrics during cyclic electric loadings. Charge accumulation at domain walls is the main reason of the formation of c domains, which are less responsive to the applied electric field. The rapid growth of the frozen c domains leads to the ferroelectric degradation. This finding gives insights into the nature of ferroelectric degradation in nanodevices, and reveals the role of the injected charges in polarization reversal. Space charges or injected charges dominate the ferroelectric degradation, however, its physics insight remains unclear. Here, the authors reveal the nature of ferroelectric degradation in nanodevices and the role of the injected charges in polarization reversal. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
12
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
149692067
Full Text :
https://doi.org/10.1038/s41467-021-22355-1