Back to Search Start Over

A Multi-Scale Feature Extraction-Based Normalized Attention Neural Network for Image Denoising.

Authors :
Wang, Yi
Song, Xiao
Gong, Guanghong
Li, Ni
Song, Byung Cheol
Source :
Electronics (2079-9292); 2/1/2021, Vol. 10 Issue 3, p319-319, 1p
Publication Year :
2021

Abstract

Due to the rapid development of deep learning and artificial intelligence techniques, denoising via neural networks has drawn great attention due to their flexibility and excellent performances. However, for most convolutional network denoising methods, the convolution kernel is only one layer deep, and features of distinct scales are neglected. Moreover, in the convolution operation, all channels are treated equally; the relationships of channels are not considered. In this paper, we propose a multi-scale feature extraction-based normalized attention neural network (MFENANN) for image denoising. In MFENANN, we define a multi-scale feature extraction block to extract and combine features at distinct scales of the noisy image. In addition, we propose a normalized attention network (NAN) to learn the relationships between channels, which smooths the optimization landscape and speeds up the convergence process for training an attention model. Moreover, we introduce the NAN to convolutional network denoising, in which each channel gets gain; channels can play different roles in the subsequent convolution. To testify the effectiveness of the proposed MFENANN, we used both grayscale and color image sets whose noise levels ranged from 0 to 75 to do the experiments. The experimental results show that compared with some state-of-the-art denoising methods, the restored images of MFENANN have larger peak signal-to-noise ratios (PSNR) and structural similarity index measure (SSIM) values and get better overall appearance. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20799292
Volume :
10
Issue :
3
Database :
Complementary Index
Journal :
Electronics (2079-9292)
Publication Type :
Academic Journal
Accession number :
149654186
Full Text :
https://doi.org/10.3390/electronics10030319