Back to Search Start Over

Anti-reflection coated vacuum window for the Primordial Inflation Polarization ExploreR (PIPER) balloon-borne instrument.

Authors :
Datta, Rahul
Chuss, David T.
Eimer, Joseph
Essinger-Hileman, Thomas
Gandilo, Natalie N.
Helson, Kyle
Kogut, Alan J.
Lowe, Luke
Mirel, Paul
Rostem, Karwan
Sagliocca, Marco
Sponseller, Danielle
Switzer, Eric R.
Taraschi, Peter A.
Wollack, Edward J.
Source :
Review of Scientific Instruments; Mar2021, Vol. 92 Issue 3, p1-12, 12p
Publication Year :
2021

Abstract

Measuring the faint polarization signal of the cosmic microwave background (CMB) not only requires high optical throughput and instrument sensitivity but also control over systematic effects. Polarimetric cameras or receivers used in this setting often employ dielectric vacuum windows, filters, or lenses to appropriately prepare light for detection by cooled sensor arrays. These elements in the optical chain are typically designed to minimize reflective losses and hence improve sensitivity while minimizing potential imaging artifacts such as glint and ghosting. The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne instrument designed to measure the polarization of the CMB radiation at the largest angular scales and characterize astrophysical dust foregrounds. PIPER's twin telescopes and detector systems are submerged in an open-aperture liquid helium bucket dewar. A fused-silica window anti-reflection (AR) coated with polytetrafluoroethylene is installed on the vacuum cryostat that houses the cryogenic detector arrays. Light passes from the skyward portions of the telescope to the detector arrays through this window, which utilizes an indium seal to prevent superfluid helium leaks into the vacuum cryostat volume. The AR coating implemented reduces reflections from each interface to <1% compared to ∼10% from an uncoated window surface. The AR coating procedure and room temperature optical measurements of the window are presented. The indium vacuum sealing process is also described in detail, and test results characterizing its integrity to superfluid helium leaks are provided. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00346748
Volume :
92
Issue :
3
Database :
Complementary Index
Journal :
Review of Scientific Instruments
Publication Type :
Academic Journal
Accession number :
149619888
Full Text :
https://doi.org/10.1063/5.0029430