Back to Search Start Over

Deep LSTM Enhancement for RUL Prediction Using Gaussian Mixture Models.

Authors :
Sayah, M.
Guebli, D.
Noureddine, Z.
Al Masry, Z.
Source :
Automatic Control & Computer Sciences; Jan2021, Vol. 55 Issue 1, p15-25, 11p
Publication Year :
2021

Abstract

This paper introduces a new deep learning model for Remaining Useful Life (RUL) prediction of complex industrial system components using Gaussian Mixture Models (GMMs). The used model is an enhanced deep LSTM approach, for which Gaussian mixture clustering is performed for all collected sensors data and operational monitoring information. This distribution-based clustering using the hyperparameter ε leads to an adequate deep neural network for RUL prediction. An expectation-maximization algorithm was implemented to configure the deep LSTM network for RUL estimation. The proposed Gaussian mixture Clustering-based deep LSTM model for useful life prediction of the industrial components is trained and tested on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) datasets. The experiments of the enhanced deep LSTM model show clearly the relevance of using Gaussian mixture clustering for quality improvement of RUL prediction through deep LSTM models. (https://github.com/sayahmhgithub/EnhancedLSTM4RUL.git). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01464116
Volume :
55
Issue :
1
Database :
Complementary Index
Journal :
Automatic Control & Computer Sciences
Publication Type :
Academic Journal
Accession number :
149418821
Full Text :
https://doi.org/10.3103/S0146411621010089