Back to Search Start Over

Text mining meets community curation: a newly designed curation platform to improve author experience and participation at WormBase.

Authors :
Arnaboldi, Valerio
Raciti, Daniela
Auken, Kimberly Van
Chan, Juancarlos N
Müller, Hans-Michael
Sternberg, Paul W
Source :
Database: The Journal of Biological Databases & Curation; 2020, Vol. 2020, p1-16, 16p
Publication Year :
2020

Abstract

Biological knowledgebases rely on expert biocuration of the research literature to maintain up-to-date collections of data organized in machine-readable form. To enter information into knowledgebases, curators need to follow three steps: (i) identify papers containing relevant data, a process called triaging; (ii) recognize named entities; and (iii) extract and curate data in accordance with the underlying data models. WormBase (WB), the authoritative repository for research data on Caenorhabditis elegans and other nematodes, uses text mining (TM) to semi-automate its curation pipeline. In addition, WB engages its community, via an Author First Pass (AFP) system, to help recognize entities and classify data types in their recently published papers. In this paper, we present a new WB AFP system that combines TM and AFP into a single application to enhance community curation. The system employs string-searching algorithms and statistical methods (e.g. support vector machines (SVMs)) to extract biological entities and classify data types, and it presents the results to authors in a web form where they validate the extracted information, rather than enter it de novo as the previous form required. With this new system, we lessen the burden for authors, while at the same time receive valuable feedback on the performance of our TM tools. The new user interface also links out to specific structured data submission forms, e.g. for phenotype or expression pattern data, giving the authors the opportunity to contribute a more detailed curation that can be incorporated into WB with minimal curator review. Our approach is generalizable and could be applied to additional knowledgebases that would like to engage their user community in assisting with the curation. In the five months succeeding the launch of the new system, the response rate has been comparable with that of the previous AFP version, but the quality and quantity of the data received has greatly improved. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17580463
Volume :
2020
Database :
Complementary Index
Journal :
Database: The Journal of Biological Databases & Curation
Publication Type :
Academic Journal
Accession number :
149401468
Full Text :
https://doi.org/10.1093/database/baaa006