Back to Search Start Over

Lake browning may fuel phytoplankton biomass and trigger shifts in phytoplankton communities in temperate lakes.

Authors :
Senar, Oscar E.
Creed, Irena F.
Trick, Charles G.
Source :
Aquatic Sciences; Apr2021, Vol. 83 Issue 2, p1-15, 15p
Publication Year :
2021

Abstract

Lake browning—the increase in catchment-derived (allochthonous) dissolved organic matter (DOM) to lakes—is altering lake physicochemical environments, with consequences for phytoplankton biomass and community composition. We hypothesized that as lakes brown, there will be an increase in phytoplankton biomass and a shift to cyanobacteria-dominated phytoplankton communities as a result of the reduced light availability and increased DOM-bound nutrients (e.g., nitrogen, phosphorus, iron). We tested this hypothesis by sampling temperate lakes in central Ontario (Canada) spanning DOM quantity and quality gradients. We found that lake browning results in larger concentrations of more refractory (i.e., aromatic, high molecular weight) DOM and greater concentrations of nutrients; however, internal nutrient loading was also an important nutrient source in these lakes. We also found that these changes were related to the predominant species in the phytoplankton community. Diatoms dominated in clear oligotrophic lakes. Low levels of lake browning, with concentrations of dissolved organic carbon (DOC) between 4 and 8 mg L<superscript>− 1</superscript>, resulted in a shift from diatoms to cyanobacteria. Higher levels of lake browning, with concentrations of DOC between 8 and 12 mg L<superscript>− 1</superscript>, resulted in a replacement of cyanobacteria with mixotrophic species. Lake browning appears to fuel phytoplankton chlorophyll-a concentrations while triggering shifts to phytoplankton able to survive if not thrive in progressively browner waters. Lake browning may therefore have consequences on energy transfer through the lower food web. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10151621
Volume :
83
Issue :
2
Database :
Complementary Index
Journal :
Aquatic Sciences
Publication Type :
Academic Journal
Accession number :
149268513
Full Text :
https://doi.org/10.1007/s00027-021-00780-0