Back to Search
Start Over
On property () for modules over direct products of rings.
- Source :
- QM - Quaestiones Mathematicae; Feb2021, Vol. 44 Issue 2, p147-161, 15p
- Publication Year :
- 2021
-
Abstract
- In this paper we show that if {R<subscript>i</subscript>}<subscript>i∈I</subscript> is a family of commutative rings and {M<subscript>i</subscript>}<subscript>i∈I</subscript> is a family of modules such that each M<subscript>i</subscript> is an R<subscript>i</subscript>-module, then the direct product M<subscript>i</subscript> is a -module over R<subscript>i</subscript> if and only if each M<subscript>i</subscript> is an -module over R<subscript>i</subscript>, i ∈ I. This result extends the work of Hong, Kim, Lee and Ryu in Rings with Property () and their extensions, J. Algebra315 (2007), 612–628. Moreover, we characterize Property () for modules in terms of Property () of their total quotient modules, extending the work of Dobbs and Shapiro in On the strong ()-ring of Mahdou and Hassani, Mediterr. J. Math.10 (2013), 1995–1997. [ABSTRACT FROM AUTHOR]
- Subjects :
- COMMUTATIVE rings
Subjects
Details
- Language :
- English
- ISSN :
- 16073606
- Volume :
- 44
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- QM - Quaestiones Mathematicae
- Publication Type :
- Academic Journal
- Accession number :
- 149091495
- Full Text :
- https://doi.org/10.2989/16073606.2019.1676838