Back to Search Start Over

EXAM: A Framework of Learning Extreme and Moderate Embeddings for Person Re-ID.

Authors :
Guanqiu Qi
Gang Hu
XiaofeiWang
Mazur, Neal
Zhiqin Zhu
Haner, Matthew
Source :
Journal of Imaging; Jan2021, Vol. 7 Issue 1, p1-16, 16p
Publication Year :
2021

Abstract

Person re-identification (Re-ID) is challenging due to host of factors: the variety of human positions, difficulties in aligning bounding boxes, and complex backgrounds, among other factors. This paper proposes a new framework called EXAM (EXtreme And Moderate feature embeddings) for Re-ID tasks. This is done using discriminative feature learning, requiring attention-based guidance during training. Here "Extreme" refers to salient human features and "Moderate" refers to common human features. In this framework, these types of embeddings are calculated by global max-pooling and average-pooling operations respectively; and then, jointly supervised by multiple triplet and cross-entropy loss functions. The processes of deducing attention from learned embeddings and discriminative feature learning are incorporated, and benefit from each other in this end-to-end framework. From the comparative experiments and ablation studies, it is shown that the proposed EXAM is effective, and its learned feature representation reaches state-of-the-art performance. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2313433X
Volume :
7
Issue :
1
Database :
Complementary Index
Journal :
Journal of Imaging
Publication Type :
Academic Journal
Accession number :
149084030
Full Text :
https://doi.org/10.3390/jimaging7010006