Back to Search Start Over

Extremal Kähler Poincaré Type Metrics on Toric Varieties.

Authors :
Apostolov, Vestislav
Auvray, Hugues
Sektnan, Lars Martin
Source :
Journal of Geometric Analysis; Feb2021, Vol. 31 Issue 2, p1223-1290, 68p
Publication Year :
2021

Abstract

We develop a general theory for the existence of extremal Kähler metrics of Poincaré type in the sense of Auvray (J Reine Angew Math 722:1–64, 2017), defined on the complement of a torus invariant divisor of a smooth compact toric variety. In the case when the divisor is smooth, we obtain a list of necessary conditions which must be satisfied for such a metric to exist. Using the explicit methods of Apostolov et al. (Ann Sci Ecole Norm Supp (4) 48:1075–1112, 2015; J Reine Angew Math 721:109–147, 2016, https://doi.org/10.1515/crelle-2014-0060) together with the computational approach of Sektnan (N Y J Math 24:317–354, 2018), we show that on a Hirzebruch complex surface the necessary conditions are also sufficient. In particular, on such a complex surface the complement of the infinity section admits an extremal Kähler metric of Poincaré type, whereas the complement of a fibre fixed by the torus action admits a complete ambitoric extremal Kähler metric which is not of Poincaré type. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10506926
Volume :
31
Issue :
2
Database :
Complementary Index
Journal :
Journal of Geometric Analysis
Publication Type :
Academic Journal
Accession number :
148676331
Full Text :
https://doi.org/10.1007/s12220-019-00263-7