Back to Search Start Over

IntelliO3-ts v1.0: a neural network approach to predict near-surface ozone concentrations in Germany.

Authors :
Kleinert, Felix
Leufen, Lukas H.
Schultz, Martin G.
Source :
Geoscientific Model Development; 2021, Vol. 14 Issue 1, p1-25, 25p
Publication Year :
2021

Abstract

The prediction of near-surface ozone concentrations is important for supporting regulatory procedures for the protection of humans from high exposure to air pollution. In this study, we introduce a data-driven forecasting model named "IntelliO3-ts", which consists of multiple convolutional neural network (CNN) layers, grouped together as inception blocks. The model is trained with measured multi-year ozone and nitrogen oxide concentrations of more than 300 German measurement stations in rural environments and six meteorological variables from the meteorological COSMO reanalysis. This is by far the most extensive dataset used for time series predictions based on neural networks so far. IntelliO3-ts allows the prediction of daily maximum 8 h average (dma8eu) ozone concentrations for a lead time of up to 4 d, and we show that the model outperforms standard reference models like persistence models. Moreover, we demonstrate that IntelliO3-ts outperforms climatological reference models for the first 2 d, while it does not add any genuine value for longer lead times. We attribute this to the limited deterministic information that is contained in the single-station time series training data. We applied a bootstrapping technique to analyse the influence of different input variables and found that the previous-day ozone concentrations are of major importance, followed by 2 m temperature. As we did not use any geographic information to train IntelliO3-ts in its current version and included no relation between stations, the influence of the horizontal wind components on the model performance is minimal. We expect that the inclusion of advection–diffusion terms in the model could improve results in future versions of our model. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1991959X
Volume :
14
Issue :
1
Database :
Complementary Index
Journal :
Geoscientific Model Development
Publication Type :
Academic Journal
Accession number :
148596066
Full Text :
https://doi.org/10.5194/gmd-14-1-2021