Back to Search Start Over

Radiometric Calibration Evaluation for FY3D MERSI-II Thermal Infrared Channels at Lake Qinghai.

Authors :
Yan, Lin
Hu, Yonghong
Zhang, Yong
Li, Xiao-Ming
Dou, Changyong
Li, Jun
Si, Yidan
Zhang, Lijun
Source :
Remote Sensing; Feb2021, Vol. 13 Issue 3, p466, 1p
Publication Year :
2021

Abstract

The absolute radiometric accuracy of the Fengyun 3D advanced Medium Resolution Spectral Imager (FY3D MERSI-II) thermal infrared bands was evaluated using the collected field measurements and atmospheric transfer simulations during 16–22 August 2019 at Lake Qinghai. A thermal infrared radiometer equipped on an unmanned surface vehicle was used to continuously collect the water temperature. Atmospheric conditions, surface emissivity, and aerosol optical depth measured near the field experiment site were adopted by the atmospheric transfer code to calculate the parameters about the influence of atmosphere on long-wave radiation, including the path radiance and the transmittance propagated from land surface to the satellite. The radiometric calibration accuracy analysis suggests that the differences between the simulated brightness temperature and satellite-based brightness temperature are −0.346 K and −0.722 K for channel 24 on 18 and 20 August, respectively, while it reaches −0.460 K and −1.036 K for channel 25 on 18 and 20 August, respectively. The vicarious calibration coefficients were found to be in good agreement with the internal onboard calibration coefficient in channel 24 and 25 of the FY3D MERSI-II according to the validation analysis in selected regions. The thermal infrared bands of the FY3D have a good in-orbit operational status according to our vicarious calibration experiments. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
13
Issue :
3
Database :
Complementary Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
148502786
Full Text :
https://doi.org/10.3390/rs13030466