Back to Search Start Over

Geochemistry and Geochronology of the Neoproterozoic Backarc Basin Khzama Ophiolite (Anti-Atlas Mountains, Morocco): Tectonomagmatic Implications.

Authors :
Chaib, Latifa
Ait Lahna, Abdelhak
Admou, Hassan
Youbi, Nasrrddine
El Moume, Warda
Tassinari, Colombo Celso Gaeta
Mata, João
Basei, Miguel Angelo Stipp
Sato, Kei
Marzoli, Andrea
Bodinier, Jean-Louis
Gärtner, Andreas
Boumehdi, Moulay Ahmed
Bensalah, Mohamed Khalil
Soulaimani, Abderrahmane
Hefferan, Kevin
Maacha, Lhou
Bajddi, Amine
Source :
Minerals (2075-163X); Jan2021, Vol. 11 Issue 1, p56-56, 1p
Publication Year :
2021

Abstract

The Khzama ophiolite is a highly dismembered complex located in the Siroua inlier of the Moroccan Anti-Atlas Belt. It consists of ultramafic rocks, cumulate gabbros, sheeted dikes, pillow lavas, and an overlying volcano-sedimentary sequence. Three main tectonic slices of sheeted dike complexes are studied in detail along three rivers, exposing well preserved outcrops where individual dikes are clearly distinguishable from the intruded host rock (Assif n'Tinzla, Assif n'Tasriwine, and Assif n'Iriri). Sheeted dikes of the Khzama ophiolitic complex are basaltic to andesitic in composition, displaying a clear sub-alkaline nature. We identify two sets of dikes that originate from lower High-Ti series (HTS) lavas and overlying upper Low-Ti series (LTS) lava. The immobile trace-element signatures of these rocks point to a genesis on a backarc environment with magmas sourced in a supra-subduction zone (SSZ) at the spinel peridotite zone. The obtained SHRIMP U-Pb data of the gabbro represent the first radiometric age of zircon extracted from the mafic rocks that were intruded by the sheeted dike complex of the Khzama ophiolite. These grains yield a concordia age of 763 ± 5 Ma, which is consistent with the 761.1 + 1.9/−1.6 and 762 + 1/−2 Ma U-Pb zircon ages of plagiogranites of Siroua. Based on their mineralogy, modal proportions, and major element chemistry, the felsic dikes are classified as high silica–low alumina trondhjemites or plagiogranites. These plagiogranites were likely formed by the partial melting of mafic rocks rather than by extreme fractional crystallization. A plagiogranite dated at 777 ± 4.7 Ma (U-Pb on zircon) is significantly older than the ca. 762 Ma plagiogranites previously recorded for the Khzama locality, suggesting a long-lived supra-subduction zone (SSZ) with conditions for the hydrous melting of mafic rocks. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2075163X
Volume :
11
Issue :
1
Database :
Complementary Index
Journal :
Minerals (2075-163X)
Publication Type :
Academic Journal
Accession number :
148317746
Full Text :
https://doi.org/10.3390/min11010056