Back to Search Start Over

Exploring Prediction of Antimicrobial Resistance Based on Protein Solvent Accessibility Variation.

Authors :
Marini, Simone
Oliva, Marco
Slizovskiy, Ilya B.
Noyes, Noelle Robertson
Boucher, Christina
Prosperi, Mattia
Source :
Frontiers in Genetics; 1/22/2021, Vol. 11, pN.PAG-N.PAG, 13p
Publication Year :
2021

Abstract

Antimicrobial resistance (AMR) is a significant and growing public health threat. Sequencing of bacterial isolates is becoming more common, and therefore automatic identification of resistant bacterial strains is of pivotal importance for efficient, wide-spread AMR detection. To support this approach, several AMR databases and gene identification algorithms have been recently developed. A key problem in AMR detection, however, is the need for computational approaches detecting potential novel AMR genes or variants, which are not included in the reference databases. Toward this direction, here we study the relation between AMR and relative solvent accessibility (RSA) of protein variants from an in silico perspective. We show how known AMR protein variants tend to correspond to exposed residues, while on the contrary their susceptible counterparts tend to be buried. Based on these findings, we develop RSA-AMR, a novel relative solvent accessibility-based AMR scoring system. This scoring system can be applied to any protein variant to estimate its propensity of altering the relative solvent accessibility, and potentially conferring (or hindering) AMR. We show how RSA-AMR score can be integrated with existing AMR detection algorithms to expand their range of applicability into detecting potential novel AMR variants, and provide a ten-fold increase in Specificity. The two main limitations of RSA-AMR score is that it is designed on single point changes, and a limited number of variants was available for model learning. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16648021
Volume :
11
Database :
Complementary Index
Journal :
Frontiers in Genetics
Publication Type :
Academic Journal
Accession number :
148283296
Full Text :
https://doi.org/10.3389/fgene.2021.564186