Back to Search Start Over

Unravelling an oxygen-mediated reductive quenching pathway for photopolymerisation under long wavelengths.

Authors :
Wu, Chenyu
Jung, Kenward
Ma, Yongtao
Liu, Wenjian
Boyer, Cyrille
Source :
Nature Communications; 1/20/2021, Vol. 12 Issue 1, p1-9, 9p
Publication Year :
2021

Abstract

Photomediated-reversible-deactivation radical polymerisation (photo-RDRP) has a limited scope of available photocatalysts (PCs) due to multiple stringent requirements for PC properties, limiting options for performing efficient polymerisations under long wavelengths. Here we report an oxygen-mediated reductive quenching pathway (O-RQP) for photoinduced electron transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerisation. The highly efficient polymerisations that are performed in the presence of ambient air enable an expanded scope of available PCs covering a much-broadened absorption spectrum, where the oxygen tolerance of PET-RAFT allows high-quality polymerisation by preventing the existence of O<subscript>2</subscript> in large amounts and efficient O-RQP is permitted due to its requirement for only catalytic amounts of O<subscript>2</subscript>. Initially, four different porphyrin dyes are investigated for their ability to catalyse PET-RAFT polymerisation via an oxidative quenching pathway (OQP), reductive quenching pathway (RQP) and O-RQP. Thermodynamic studies with the aid of (time-dependent) density functional theory calculations in combination with experimental studies, enable the identification of the thermodynamic constraints within the OQP, RQP and O-RQP frameworks. This knowledge enables the identification of four phthalocyanine photocatalysts, that were previously thought to be inert for PET-RAFT, to be successfully used for photopolymerisations via O-RQP. Well-controlled polymerisations displaying excellent livingness are performed at wavelengths in the red to near-infrared regions. The existence of this third pathway O-RQP provides an attractive pathway to further expand the scope of photocatalysts compatible with the PET-RAFT process and facile access to photopolymerisations under long wavelengths. Photomediated-reversible-deactivation radical polymerisation has a limited scope of available photocatalysts due to multiple stringent requirements of properties. Here the authors show, an oxygen-mediated reductive quenching pathway for photoinduced electron transfer reversible addition-fragmentation chain transfer polymerisation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
12
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
148211757
Full Text :
https://doi.org/10.1038/s41467-020-20640-z