Back to Search Start Over

Ab Initio Molecular Dynamics Simulations of the Interaction between Organic Phosphates and Goethite.

Authors :
Ganta, Prasanth B.
Kühn, Oliver
Ahmed, Ashour A.
Source :
Molecules; Jan2021, Vol. 26 Issue 1, p160-160, 1p
Publication Year :
2021

Abstract

Today's fertilizers rely heavily on mining phosphorus (P) rocks. These rocks are known to become exhausted in near future, and therefore effective P use is crucial to avoid food shortage. A substantial amount of P from fertilizers gets adsorbed onto soil minerals to become unavailable to plants. Understanding P interaction with these minerals would help efforts that improve P efficiency. To this end, we performed a molecular level analysis of the interaction of common organic P compounds (glycerolphosphate (GP) and inositol hexaphosphate (IHP)) with the abundant soil mineral (goethite) in presence of water. Molecular dynamics simulations are performed for goethite–IHP/GP–water complexes using the multiscale quantum mechanics/molecular mechanics method. Results show that GP forms monodentate (M) and bidentate mononuclear (B) motifs with B being more stable than M. IHP interacts through multiple phosphate groups with the 3M motif being most stable. The order of goethite–IHP/GP interaction energies is GP M < GP B < IHP M < IHP 3M. Water is important in these interactions as multiple proton transfers occur and hydrogen bonds are formed between goethite–IHP/GP complexes and water. We also present theoretically calculated infrared spectra which match reasonably well with frequencies reported in literature. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
26
Issue :
1
Database :
Complementary Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
148034913
Full Text :
https://doi.org/10.3390/molecules26010160