Back to Search
Start Over
Understanding each other's models: a standard representation of global water models to support improvement, intercomparison, and communication.
- Source :
- Geoscientific Model Development Discussions; 1/8/2021, p1-56, 56p
- Publication Year :
- 2021
-
Abstract
- Global water models (GWMs) simulate the terrestrial water cycle, on the global scale, and are used to assess the impacts of climate change on freshwater systems. GWMs are developed within different modeling frameworks and consider different underlying hydrological processes, leading to varied model structures. Furthermore, the equations used to describe various processes take different forms and are generally accessible only from within the individual model codes. These factors have hindered a holistic and detailed understanding of how different models operate, yet such an understanding is crucial for explaining the results of model evaluation studies, understanding inter-model differences in their simulations, and identifying areas for future model development. This study provides a comprehensive overview of how state-of-the-art GWMs are designed. We analyze water storage compartments, water flows, and human water use sectors included in 16 GWMs that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b (ISIMIP2b). We develop a standard writing style for the model equations to further enhance model improvement, intercomparison, and communication. In this study, WaterGAP2 used the highest number of water storage compartments, 11, and CWatM used 10 compartments. Seven models used six compartments, while three models (JULES-W1, Mac-PDM.20, and VIC) used the lowest number, three compartments. WaterGAP2 simulates five human water use sectors, while four models (CLM4.5, CLM5.0, LPJmL, and MPI-HM) simulate only water used by humans for the irrigation sector. We conclude that even though hydrologic processes are often based on similar equations, in the end, these equations have been adjusted or have used different values for specific parameters or specific variables. Our results highlight that the predictive uncertainty of GWMs can be reduced through improvements of the existing hydrologic processes, implementation of new processes in the models, and high-quality input data. [ABSTRACT FROM AUTHOR]
- Subjects :
- WATER storage
WATER use
HYDROLOGIC cycle
HYDRAULICS
Subjects
Details
- Language :
- English
- ISSN :
- 19919611
- Database :
- Complementary Index
- Journal :
- Geoscientific Model Development Discussions
- Publication Type :
- Academic Journal
- Accession number :
- 148029976
- Full Text :
- https://doi.org/10.5194/gmd-2020-367