Back to Search Start Over

Potential predictors of type-2 diabetes risk: machine learning, synthetic data and wearable health devices.

Authors :
Stolfi, Paola
Valentini, Ilaria
Palumbo, Maria Concetta
Tieri, Paolo
Grignolio, Andrea
Castiglione, Filippo
Source :
BMC Bioinformatics; 12/14/2020, Vol. 21 Issue 17, p1-19, 19p
Publication Year :
2020

Abstract

Background: The aim of a recent research project was the investigation of the mechanisms involved in the onset of type 2 diabetes in the absence of familiarity. This has led to the development of a computational model that recapitulates the aetiology of the disease and simulates the immunological and metabolic alterations linked to type-2 diabetes subjected to clinical, physiological, and behavioural features of prototypical human individuals. Results: We analysed the time course of 46,170 virtual subjects, experiencing different lifestyle conditions. We then set up a statistical model able to recapitulate the simulated outcomes. Conclusions: The resulting machine learning model adequately predicts the synthetic dataset and can, therefore, be used as a computationally-cheaper version of the detailed mathematical model, ready to be implemented on mobile devices to allow self-assessment by informed and aware individuals. The computational model used to generate the dataset of this work is available as a web-service at the following address: http://kraken.iac.rm.cnr.it/T2DM. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14712105
Volume :
21
Issue :
17
Database :
Complementary Index
Journal :
BMC Bioinformatics
Publication Type :
Academic Journal
Accession number :
147579337
Full Text :
https://doi.org/10.1186/s12859-020-03763-4