Back to Search Start Over

Tropical and Extratropical Cyclone Detection Using Deep Learning.

Authors :
Kumler-Bonfanti, Christina
Stewart, Jebb
Hall, David
Govett, Mark
Source :
Journal of Applied Meteorology & Climatology; Dec2020, Vol. 59 Issue 12, p1971-1985, 15p
Publication Year :
2020

Abstract

Extracting valuable information from large sets of diverse meteorological data is a time-intensive process. Machine-learning methods can help to improve both speed and accuracy of this process. Specifically, deep-learning image-segmentation models using the U-Net structure perform faster and can identify areas that are missed by more restrictive approaches, such as expert hand-labeling and a priori heuristic methods. This paper discusses four different state-of-the-art U-Net models designed for detection of tropical and extratropical cyclone regions of interest (ROI) from two separate input sources: total precipitable water output from the Global Forecast System (GFS) model and water vapor radiance images from the Geostationary Operational Environmental Satellite (GOES). These models are referred to as International Best Track Archive for Climate Stewardship (IBTrACS)-GFS, Heuristic-GFS, IBTrACS-GOES, and Heuristic-GOES. All four U-Nets are fast information extraction tools and perform with an ROI detection accuracy ranging from 80% to 99%. These are additionally evaluated with the Dice and Tversky intersection-over-union (IoU) metrics, having Dice coefficient scores ranging from 0.51 to 0.76 and Tversky coefficients ranging from 0.56 to 0.74. The extratropical cyclone U-Net model performed 3 times as fast as the comparable heuristic model used to detect the same ROI. The U-Nets were specifically selected for their capabilities in detecting cyclone ROI beyond the scope of the training labels. These machine-learning models identified more ambiguous and active ROI missed by the heuristic model and hand-labeling methods that are commonly used in generating real-time weather alerts, having a potentially direct impact on public safety. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15588424
Volume :
59
Issue :
12
Database :
Complementary Index
Journal :
Journal of Applied Meteorology & Climatology
Publication Type :
Academic Journal
Accession number :
147544543
Full Text :
https://doi.org/10.1175/JAMC-D-20-0117.1