Back to Search
Start Over
An evaluation of a multi-day rainfall – runoff volume – peak discharge transform for flood frequency estimation.
- Source :
- Australasian Journal of Water Resources; Oct2020, Vol. 24 Issue 2, p167-182, 16p
- Publication Year :
- 2020
-
Abstract
- A new method to estimate design discharge quantiles is described based on converting multi-day rainfall P to flood event runoff RO, factored to generate discharge Q. The so-called PROQ transfer function is founded on simple flood volume-peak and GRADEX rainfall-runoff tanh relationships. Performance testing of PROQ, in both at-site and regional design flood contexts up to 1 in 100 annual exceedance probability, was made using south east Queensland streamgauge data. A statistical comparison against proven methods showed that the PROQ transform has significant potential as an alternative for design flood estimation. An example of how PROQ can be used within a design flood framework and recommendations for further enhancement are provided. Abbreviations: AEP: Annual exceedance probability; AMS: Annual maximum series, extracted from the flood record at a gauge site; ANOVA: Analysis of variance; ARR: Australian Rainfall and Runoff guidelines; A-S: At-site. Describes a set of methods to estimate design flood quantiles by statistical analysis of the flood record at an individual gauge site; E: Nash–Sutcliffe efficiency; FFA: Flood frequency analysis; G-B: Multiple Grubbs-Beck test recommended by ARR 2019 for low flow censoring. Used for at-site flood frequency analysis; GEV: General extreme value probability distribution; GRADEX: Gradient of extreme values. Design flood probability concept originating in France based on parallelism of rainfall and runoff quantile curves; L: Retention of rainfall within the catchment during flood event, expressed as a depth; LP3: Log Pearson 3 probability distribution; P: Rainfall depth; PRM: Probabilistic Rational Method. An ARR method for ungauged, undeveloped Australian catchments superseded in 2016; PROQ: Transfer function based on converting P to RO and then factoring RO to estimate Q; PW: Palmen and Weeks. Regional method for ungauged, undeveloped Queensland catchments developed by Palmen and Weeks (2011); R: Retention curve number. Used in probabilistic charting of design floods based on PROQ; RE: Absolute relative error; REG: Regional. Describes a set of methods to estimate design flood quantiles using information obtained from at-site analyses of several representative catchments within a region; RO: Flood event runoff depth; SR30: Strike rate of estimates within ±30% tolerance. [ABSTRACT FROM AUTHOR]
- Subjects :
- RAINFALL
ANALYSIS of variance
RUNOFF
FLOODS
EXTREME value theory
Subjects
Details
- Language :
- English
- ISSN :
- 13241583
- Volume :
- 24
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- Australasian Journal of Water Resources
- Publication Type :
- Academic Journal
- Accession number :
- 147162439
- Full Text :
- https://doi.org/10.1080/13241583.2020.1821488