Back to Search Start Over

Far‐red radiation stimulates dry mass partitioning to fruits by increasing fruit sink strength in tomato.

Authors :
Ji, Yongran
Nuñez Ocaña, Diego
Choe, Daegeun
Larsen, Dorthe H.
Marcelis, Leo F. M.
Heuvelink, Ep
Source :
New Phytologist; Dec2020, Vol. 228 Issue 6, p1914-1925, 12p
Publication Year :
2020

Abstract

Summary: Far‐red (FR) light promotes fruit growth by increasing dry mass partitioning to fruits, but the mechanism behind this is unknown. We hypothesise that it is due to an increased fruit sink strength as FR radiation enhances sugar transportation and metabolism.Tomato plants were grown with or without 50–80 μmol m−2 s−1 of FR radiation added to a common background 150–170 μmol m−2 s−1 red + blue light‐emitting diode lighting. Potential fruit growth, achieved by pruning each truss to one remaining fruit, was measured to quantify fruit sink strength. Model simulation was conducted to test whether the measured fruit sink strength quantitatively explained the FR effect on dry mass partitioning. Starch, sucrose, fructose and glucose content were measured. Expression levels of key genes involved in sugar transportation and metabolism were determined.FR radiation increased fruit sink strength by 38%, which, in model simulation, led to an increased dry mass partitioned to fruits that quantitatively agreed very well with measured partitioning. FR radiation increased fruit sugar concentration and upregulated the expression of genes associated with both sugar transportation and metabolism.This is the first study to demonstrate that FR radiation stimulates dry mass partitioning to fruits mainly by increasing fruit sink strength via simultaneous upregulation of sugar transportation and metabolism. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0028646X
Volume :
228
Issue :
6
Database :
Complementary Index
Journal :
New Phytologist
Publication Type :
Academic Journal
Accession number :
147152283
Full Text :
https://doi.org/10.1111/nph.16805