Back to Search Start Over

Effect of a Boric Acid Corrosive Environment on the Microstructure and Properties of Concrete.

Authors :
Wang, Yu
Huang, Bei
Mao, Zhongyang
Deng, Min
Cao, Huan
Source :
Materials (1996-1944); 11/1/2020, Vol. 13 Issue 21, p5036-5036, 1p
Publication Year :
2020

Abstract

Boric acid, a weak acid, is often used to shield neutrons in water cooling systems in nuclear power stations. The leakage of boric acid in water cooling systems damages the concrete structure and affects the safety of nuclear power engineering. In this experiment, concrete specimens were cured with boric acid at 20, 40, and 70 °C to study the effect of boric acid on the microstructure and properties of concrete. X-ray diffraction (XRD) and thermogravimetry and differential scanning calorimetry (TG-DSC) were used to analyze the change in mineral composition. The microstructure was examined by scanning electron microscope (SEM). The porosity of the concrete was examined by mercury intrusion porosimetry (MIP). The results show that the performance of specimens was stable under the curing conditions of 20 and 40 °C. Under the curing environment of 70 °C, the performance of concrete cured with 0, 2000, and 7000 ppm concentrations was stable, but the compressive strength of the 180,000 ppm specimen was reduced by 27.8% and suffered the most serious loss of mass and surface corrosion, with the most harmful pores. The high concentration of boric acid seriously damaged the surface structure of concrete, which is the main reason for its loss of properties. This situation is extremely dangerous in nuclear power engineering, so the effect of boric acid leakage cannot be ignored. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
13
Issue :
21
Database :
Complementary Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
147051499
Full Text :
https://doi.org/10.3390/ma13215036