Back to Search Start Over

Understanding High-Salt and Cold Adaptation of a Polyextremophilic Enzyme.

Authors :
Karan, Ram
Mathew, Sam
Muhammad, Reyhan
Bautista, Didier B.
Vogler, Malvina
Eppinger, Jorg
Oliva, Romina
Cavallo, Luigi
Arold, Stefan T.
Rueping, Magnus
Source :
Microorganisms; Oct2020, Vol. 8 Issue 10, p1594, 1p
Publication Year :
2020

Abstract

The haloarchaeon Halorubrum lacusprofundi is among the few polyextremophilic organisms capable of surviving in one of the most extreme aquatic environments on Earth, the Deep Lake of Antarctica (−18 °C to +11.5 °C and 21–28%, w/v salt content). Hence, H. lacusprofundi has been proposed as a model for biotechnology and astrobiology to investigate potential life beyond Earth. To understand the mechanisms that allow proteins to adapt to both salinity and cold, we structurally (including X-ray crystallography and molecular dynamics simulations) and functionally characterized the β-galactosidase from H. lacusprofundi (hla_bga). Recombinant hla_bga (produced in Haloferax volcanii) revealed exceptional stability, tolerating up to 4 M NaCl and up to 20% (v/v) of organic solvents. Despite being cold-adapted, hla_bga was also stable up to 60 °C. Structural analysis showed that hla_bga combined increased surface acidity (associated with halophily) with increased structural flexibility, fine-tuned on a residue level, for sustaining activity at low temperatures. The resulting blend enhanced structural flexibility at low temperatures but also limited protein movements at higher temperatures relative to mesophilic homologs. Collectively, these observations help in understanding the molecular basis of a dual psychrophilic and halophilic adaptation and suggest that such enzymes may be intrinsically stable and functional over an exceptionally large temperature range. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20762607
Volume :
8
Issue :
10
Database :
Complementary Index
Journal :
Microorganisms
Publication Type :
Academic Journal
Accession number :
146679112
Full Text :
https://doi.org/10.3390/microorganisms8101594