Back to Search
Start Over
Sensitivity of Storm Response to Antecedent Topography in the XBeach Model.
- Source :
- Journal of Marine Science & Engineering; Oct2020, Vol. 8 Issue 10, p829, 1p
- Publication Year :
- 2020
-
Abstract
- Antecedent topography is an important aspect of coastal morphology when studying and forecasting coastal change hazards. The uncertainty in morphologic response of storm-impact models and their use in short-term hazard forecasting and decadal forecasting is important to account for when considering a coupled model framework. This study provided a methodology to investigate uncertainty of profile response within the storm impact model XBeach related to varying antecedent topographies. A parameterized island Gaussian fit (PIGF) model generated an idealized baseline profile and a suite of idealized profiles that vary specific characteristics based on collated observed LiDAR data from Dauphin Island, AL, USA. Six synthetic storm scenarios were simulated on each of the idealized profiles with XBeach in both 1- and 2-dimensional setups and analyzed to determine the morphological response and uncertainty related to the varied antecedent topographies. Profile morphologic response tends to scale with storm magnitude but among the varied profiles there is greater uncertainty in profile response to the medium range storm scenarios than to the low and high magnitude storm scenarios. XBeach can be highly sensitive to morphologic thresholds, both antecedent and time-varying, especially with regards to beach slope. [ABSTRACT FROM AUTHOR]
- Subjects :
- TOPOGRAPHY
LIDAR
UNCERTAINTY
FORECASTING
ISLANDS
Subjects
Details
- Language :
- English
- ISSN :
- 20771312
- Volume :
- 8
- Issue :
- 10
- Database :
- Complementary Index
- Journal :
- Journal of Marine Science & Engineering
- Publication Type :
- Academic Journal
- Accession number :
- 146656566
- Full Text :
- https://doi.org/10.3390/jmse8100829