Back to Search Start Over

Burst Pressure Prediction of API 5L X-Grade Dented Pipelines Using Deep Neural Network.

Authors :
Oh, Dohan
Race, Julia
Oterkus, Selda
Koo, Bonguk
Source :
Journal of Marine Science & Engineering; Oct2020, Vol. 8 Issue 10, p766, 1p
Publication Year :
2020

Abstract

Mechanical damage is recognized as a problem that reduces the performance of oil and gas pipelines and has been the subject of continuous research. The artificial neural network in the spotlight recently is expected to be another solution to solve the problems relating to the pipelines. The deep neural network, which is on the basis of artificial neural network algorithm and is a method amongst various machine learning methods, is applied in this study. The applicability of machine learning techniques such as deep neural network for the prediction of burst pressure has been investigated for dented API 5L X-grade pipelines. To this end, supervised learning is employed, and the deep neural network model has four layers with three hidden layers, and the neural network uses the fully connected layer. The burst pressure computed by deep neural network model has been compared with the results of finite element analysis based parametric study, and the burst pressure calculated by the experimental results. According to the comparison results, it showed good agreement. Therefore, it is concluded that deep neural networks can be another solution for predicting the burst pressure of API 5L X-grade dented pipelines. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20771312
Volume :
8
Issue :
10
Database :
Complementary Index
Journal :
Journal of Marine Science & Engineering
Publication Type :
Academic Journal
Accession number :
146656503
Full Text :
https://doi.org/10.3390/jmse8100766