Back to Search Start Over

Scaling Limits in Divisible Sandpiles: A Fourier Multiplier Approach.

Authors :
Cipriani, Alessandra
de Graaff, Jan
Ruszel, Wioletta M.
Source :
Journal of Theoretical Probability; Dec2020, Vol. 33 Issue 4, p2061-2088, 28p
Publication Year :
2020

Abstract

In this paper we investigate scaling limits of the odometer in divisible sandpiles on d-dimensional tori following up the works of Chiarini et al. (Odometer of long-range sandpiles in the torus: mean behaviour and scaling limits, 2018), Cipriani et al. (Probab Theory Relat Fields 172:829–868, 2017; Stoch Process Appl 128(9):3054–3081, 2018). Relaxing the assumption of independence of the weights of the divisible sandpile, we generate generalized Gaussian fields in the limit by specifying the Fourier multiplier of their covariance kernel. In particular, using a Fourier multiplier approach, we can recover fractional Gaussian fields of the form (- Δ) - s / 2 W for s > 2 and W a spatial white noise on the d-dimensional unit torus. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08949840
Volume :
33
Issue :
4
Database :
Complementary Index
Journal :
Journal of Theoretical Probability
Publication Type :
Academic Journal
Accession number :
146584464
Full Text :
https://doi.org/10.1007/s10959-019-00952-7