Back to Search
Start Over
Scaling Limits in Divisible Sandpiles: A Fourier Multiplier Approach.
- Source :
- Journal of Theoretical Probability; Dec2020, Vol. 33 Issue 4, p2061-2088, 28p
- Publication Year :
- 2020
-
Abstract
- In this paper we investigate scaling limits of the odometer in divisible sandpiles on d-dimensional tori following up the works of Chiarini et al. (Odometer of long-range sandpiles in the torus: mean behaviour and scaling limits, 2018), Cipriani et al. (Probab Theory Relat Fields 172:829–868, 2017; Stoch Process Appl 128(9):3054–3081, 2018). Relaxing the assumption of independence of the weights of the divisible sandpile, we generate generalized Gaussian fields in the limit by specifying the Fourier multiplier of their covariance kernel. In particular, using a Fourier multiplier approach, we can recover fractional Gaussian fields of the form (- Δ) - s / 2 W for s > 2 and W a spatial white noise on the d-dimensional unit torus. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 08949840
- Volume :
- 33
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- Journal of Theoretical Probability
- Publication Type :
- Academic Journal
- Accession number :
- 146584464
- Full Text :
- https://doi.org/10.1007/s10959-019-00952-7