Back to Search Start Over

Water-soluble boron carbon oxynitride dots with excellent solid-state fluorescence and ultralong room-temperature phosphorescence.

Authors :
Han, Shenghui
Lian, Gang
Zeng, Xiaoliang
Cao, Zhaozhen
Wang, Qilong
Cui, Deliang
Wong, Ching-Ping
Source :
Nano Research; Dec2020, Vol. 13 Issue 12, p3261-3267, 7p
Publication Year :
2020

Abstract

Developing metal-free and long lifetime room-temperature phosphorescence (RTP) materials has received tremendous interest due to their numerous potential applications, of which stable triplet-excited state is the core challenge. Here, boron carbon oxynitride (BCNO) dots, emitting stable blue fluorescence and green RTP, are reported for the first time. The obtained BCNO dots exhibit an unexpected ultralong RTP lifetime of 1.57 s, lasting over 8 s to naked eyes. The effective doping of carbon and oxygen elements in boron nitride (BN) actually provides a small energy gap between singlet and triplet states, facilitating the intersystem crossing (ISC) and populating of triplet excitons. The formation of compact cores via crystallization and effective inter-/intra-dot hydrogen bonds further stabilizes the excited triplet states and reduces quenching of RTP by oxygen at room temperature. Based on the water-soluble feature of BCNO dots, a novel advanced security ink is developed toward anti-counterfeiting tag and confidential information encryption. This study extends BCNO dots to rarely exploited phosphorescence fields and also provides a facile strategy to prepare ultralong lifetime metal-free RTP materials. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19980124
Volume :
13
Issue :
12
Database :
Complementary Index
Journal :
Nano Research
Publication Type :
Academic Journal
Accession number :
146477238
Full Text :
https://doi.org/10.1007/s12274-020-2999-y