Back to Search
Start Over
Production of Cf-252 and other transplutonium isotopes at Oak Ridge National Laboratory.
- Source :
- Radiochimica Acta; Sep2020, Vol. 109 Issue 9, p737-746, 10p
- Publication Year :
- 2020
-
Abstract
- In 1957 Glenn T. Seaborg conceived and advocated for the construction of the High Flux Isotope Reactor (HFIR) and the Transuranium Processing Plant (since then renamed the Radiochemical Engineering Development Center, or REDC) at Oak Ridge National Laboratory. Heavily shielded hot cells, glove boxes, and laboratories allow recovery of transuranium elements produced in substantial quantities. Seaborg's vision of HFIR and REDC producing milligram quantities of berkelium, californium, and einsteinium has been fulfilled beginning in 1966 through May 2019 with 78 production campaigns yielding a cumulative totals of 1.2 g of <superscript>249</superscript>Bk, 10.2 g of <superscript>252</superscript>Cf, 39 mg of <superscript>253</superscript>Es, and 15 pg of <superscript>257</superscript>Fm. Notably, <superscript>252</superscript>Cf is a neutron source used in many industrial applications including oil exploration; process control systems for the cement industry, coal analysis, and power production; sources to start nuclear reactors and perform nondestructive materials analyses; homeland security and national defense detection devices; and medical research. Isotopes made available through transplutonium production at HFIR/REDC have enabled scientists to study the nuclear properties and reactions, chemical properties, optical properties, and solid-state properties of transplutonium elements. Long-lived isotopes have served as targets in heavy ion accelerators to produce heavier elements leading to the discovery of <superscript>104</superscript>Rf, <superscript>105</superscript>Db, <superscript>106</superscript>Sg, <superscript>113</superscript>Nh, <superscript>114</superscript>Fl, <superscript>115</superscript>Mc, <superscript>116</superscript>Lv, <superscript>117</superscript>Ts, and <superscript>118</superscript>Og. This paper reviews the evolution of the processing flowsheets to produce, separate, and purify transplutonium isotopes, which have evolved over 50 years of operation at HFIR and REDC, and summarizes directions of future work to improve the efficiency of the production operations. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00338230
- Volume :
- 109
- Issue :
- 9
- Database :
- Complementary Index
- Journal :
- Radiochimica Acta
- Publication Type :
- Academic Journal
- Accession number :
- 146322304
- Full Text :
- https://doi.org/10.1515/ract-2020-0008