Back to Search Start Over

Spectral CT Reconstruction via Low-Rank Representation and Region-Specific Texture Preserving Markov Random Field Regularization.

Authors :
Shi, Yongyi
Gao, Yongfeng
Zhang, Yanbo
Sun, Junqi
Mou, Xuanqin
Liang, Zhengrong
Source :
IEEE Transactions on Medical Imaging; Oct2020, Vol. 39 Issue 10, p2996-3007, 12p
Publication Year :
2020

Abstract

Photon-counting spectral computed tomography (CT) is capable of material characterization and can improve diagnostic performance over traditional clinical CT. However, it suffers from photon count starving for each individual energy channel which may cause severe artifacts in the reconstructed images. Furthermore, since the images in different energy channels describe the same object, there are high correlations among different channels. To make full use of the inter-channel correlations and minimize the count starving effect while maintaining clinically meaningful texture information, this paper combines a region-specific texture model with a low-rank correlation descriptor as an a priori regularization to explore a superior texture preserving Bayesian reconstruction of spectral CT. Specifically, the inter-channel correlations are characterized by the low-rank representation, and the inner-channel regional textures are modeled by a texture preserving Markov random field. In other words, this paper integrates the spectral and spatial information into a unified Bayesian reconstruction framework. The widely-used Split-Bregman algorithm is employed to minimize the objective function because of the non-differentiable property of the low-rank representation. To evaluate the tissue texture preserving performance of the proposed method for each channel, three references are built for comparison: one is the traditional CT image from energy integration detection. The second one is spectral images from dual-energy CT. The third one is individual channels images from custom-made photon-counting spectral CT. As expected, the proposed method produced promising results in terms of not only preserving texture features but also suppressing image noise in each channel, comparing to existing methods of total variation (TV), low-rank TV and tensor dictionary learning, by both visual inspection and quantitative indexes of root mean square error, peak signal to noise ratio, structural similarity and feature similarity. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02780062
Volume :
39
Issue :
10
Database :
Complementary Index
Journal :
IEEE Transactions on Medical Imaging
Publication Type :
Academic Journal
Accession number :
146222077
Full Text :
https://doi.org/10.1109/TMI.2020.2983414