Back to Search Start Over

Mining a human transcriptome database for chemical modulators of NRF2.

Authors :
Rooney, John P.
Chorley, Brian
Hiemstra, Steven
Wink, Steven
Wang, Xuting
Bell, Douglas A.
van de Water, Bob
Corton, J. Christopher
Source :
PLoS ONE; 9/28/2020, Vol. 15 Issue 9, p1-26, 26p
Publication Year :
2020

Abstract

Nuclear factor erythroid-2 related factor 2 (NRF2) encoded by the NFE2L2 gene is a transcription factor critical for protecting cells from chemically-induced oxidative stress. We developed computational procedures to identify chemical modulators of NRF2 in a large database of human microarray data. A gene expression biomarker was built from statistically-filtered gene lists derived from microarray experiments in primary human hepatocytes and cancer cell lines exposed to NRF2-activating chemicals (oltipraz, sulforaphane, CDDO-Im) or in which the NRF2 suppressor Keap1 was knocked down by siRNA. Directionally consistent biomarker genes were further filtered for those dependent on NRF2 using a microarray dataset from cells after NFE2L2 siRNA knockdown. The resulting 143-gene biomarker was evaluated as a predictive tool using the correlation-based Running Fisher algorithm. Using 59 gene expression comparisons from chemically-treated cells with known NRF2 activating potential, the biomarker gave a balanced accuracy of 93%. The biomarker was comprised of many well-known NRF2 target genes (AKR1B10, AKR1C1, NQO1, TXNRD1, SRXN1, GCLC, GCLM), 69% of which were found to be bound directly by NRF2 using ChIP-Seq. NRF2 activity was assessed across ~9840 microarray comparisons from ~1460 studies examining the effects of ~2260 chemicals in human cell lines. A total of 260 and 43 chemicals were found to activate or suppress NRF2, respectively, most of which have not been previously reported to modulate NRF2 activity. Using a NRF2-responsive reporter gene in HepG2 cells, we confirmed the activity of a set of chemicals predicted using the biomarker. The biomarker will be useful for future gene expression screening studies of environmentally-relevant chemicals. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
15
Issue :
9
Database :
Complementary Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
146121598
Full Text :
https://doi.org/10.1371/journal.pone.0239367