Back to Search Start Over

Identification of histone malonylation in the human fetal brain and implications for diabetes‐induced neural tube defects.

Authors :
Zhang, Qin
Cai, Tanxi
Xiao, Zonghui
Li, Dan
Wan, Chunlei
Cui, Xiaodai
Bai, Baoling
Source :
Molecular Genetics & Genomic Medicine; Sep2020, Vol. 8 Issue 9, p1-12, 12p
Publication Year :
2020

Abstract

Background: Neural tube defects (NTDs) are severe congenital malformations. Diabetes during pregnancy is a risk factor for NTDs, but its mechanism remains elusive. Emerging evidence suggests that protein malonylation is involved in diabetes. Here, we report the correlation between histone lysine malonylation in diabetes‐induced NTDs. Methods: Nano‐HPLC/MS/MS was used to screen the histone malonylation profile in human embryonic brain tissue. Then, the histone malonylation level was compared between the brains of normal control mice and mice with diabetes‐induced NTDs. Finally, the histone malonylation level was compared under high glucose exposure in an E9 neuroepithelial cell line (NE4C). Results: A total of 30 histone malonylation sites were identified in human embryonic brain tissue, including 18 novel sites. Furthermore, we found an increased histone malonylation level in brain tissues from mice with diabetes‐induced NTDs. Finally, both the histone malonylation modified sites and the modified levels were proved to be increased in the NE4C treated with high glucose. Conclusion: Our results present a comprehensive map of histone malonylation in the human fetal brain. Furthermore, we provide experimental evidence supporting a relationship between histone malonylation and NTDs caused by high glucose‐induced diabetes. These findings offer new insights into the pathological role of histone modifications in human NTDs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23249269
Volume :
8
Issue :
9
Database :
Complementary Index
Journal :
Molecular Genetics & Genomic Medicine
Publication Type :
Academic Journal
Accession number :
145731762
Full Text :
https://doi.org/10.1002/mgg3.1403