Back to Search Start Over

Floods due to Atmospheric Rivers along the U.S. West Coast: The Role of Antecedent Soil Moisture in a Warming Climate.

Authors :
QIAN CAO
GERSHUNOV, ALEXANDER
SHULGINA, TAMARA
RALPH, F. MARTIN
NING SUN
LETTENMAIER, DENNIS P.
Source :
Journal of Hydrometeorology; Aug2020, Vol. 21 Issue 8, p1827-1845, 19p
Publication Year :
2020

Abstract

Precipitation extremes are projected to become more frequent along the U.S. West Coast due to increased atmospheric river (AR) activity, but the frequency of less intense precipitation events may decrease. Antecedent soilmoisture (ASM) conditions can have a large impact on flood responses, especially if prestorm precipitation decreases. Taken together with increased antecedent evaporative demand due to warming, this would result in reduced soil moisture at the onset of extreme precipitation events. We examine the impact of ASM on AR-related floods in a warming climate in three basins that form a transect along the U.S. Pacific Coast: the Chehalis River basin inWashington, the Russian River basin in Northern California, and the SantaMargarita River basin in Southern California. We ran the Distributed Hydrology Soil Vegetation Model (DHSVM) over the three river basins using forcings downscaled from 10 global climate models (GCMs). We examined the dynamic role of ASM by comparing the changes in the largest 50, 100, and 150 extreme events in two periods, 1951-2000 and 2050-99. In the Chehalis basin, the projected fraction of AR-related extreme discharge events slightly decreases. In the Russian basin, this fraction increases, however, and more substantially so in the Santa Margarita basin. This is due to increases in AR-related extreme precipitation events, as well as the fact that the relationship of extreme precipitation to extreme discharge is strengthened by projected increases in year-to-year volatility of annual precipitation in California, which increases the likelihood of concurrent occurrence of large storms and wet ASM conditions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1525755X
Volume :
21
Issue :
8
Database :
Complementary Index
Journal :
Journal of Hydrometeorology
Publication Type :
Academic Journal
Accession number :
145396809
Full Text :
https://doi.org/10.1175/JHM-D-19-0242.1