Back to Search
Start Over
Infrared spectra of pyroxenes (crystalline chain silicates) at room temperature.
- Source :
- Monthly Notices of the Royal Astronomical Society; Sep2020, Vol. 497 Issue 3, p3658-3673, 16p
- Publication Year :
- 2020
-
Abstract
- Crystals of pyroxene are common in meteorites but few compositions have been recognized in astronomical environments due to the limited chemistries included in laboratory studies. We present quantitative room-temperature spectra of 17 Mg-, Fe-, and Ca-bearing ortho- and clinopyroxenes, and a Ca-pyroxenoid in order to discern trends indicative of crystal structure and a wide range of composition. Data are produced using a diamond anvil cell: our band strengths are up to six times higher than those measured in KBr or polyethylene dispersions, which include variations in path length (from grain size) and surface reflections that are not addressed in data processing. Pyroxenes have varied spectra: only two bands, at 10.22  and 15.34  μ m in enstatite (En<subscript>99</subscript>), are common to all. Peak wavelengths generally increase as Mg is replaced by Ca or Fe. However, two bands in MgFe-pyroxenes shift to shorter wavelengths as the Fe component increases from 0 to 60 per cent. A high-intensity band shifts from 11.6 to 11.2  μ m and remains at 11.2  μ m as Fe increases to 100 per cent; it resembles an astronomical feature normally identified with olivine or forsterite. The distinctive pyroxene bands between 13  and 16  μ m show promise for their identification in Mid-Infrared-Instrument spectra obtained with the James Webb Space Telescope. The many pyroxene bands between 40 and 80  μ m could be diagnositic of silicate mineralogy if data were obtained with the proposed Space Infrared Telescope for Cosmology and Astrophysics. Our data indicate that comparison between room-temperature laboratory bands for enstatite and cold ∼10 − K astronomical dust features at wavelengths |$\gtrsim 28~\mu$| m can result in the identification of (Mg,Fe)- pyroxenes that contain 7–15 per cent less Fe– than their true values because some temperature shifts mimic some compositional shifts. Therefore some astronomical silicates may contain more Fe, and less Mg, than previously thought. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00358711
- Volume :
- 497
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Monthly Notices of the Royal Astronomical Society
- Publication Type :
- Academic Journal
- Accession number :
- 145383494
- Full Text :
- https://doi.org/10.1093/mnras/staa2227