Back to Search
Start Over
Towards a consistent understanding of the exotic nucleus 1442Si28.
- Source :
- Indian Journal of Pure & Applied Physics; May2020, Vol. 58 Issue 5, p418-422, 5p
- Publication Year :
- 2020
-
Abstract
- The issue of magicity of <subscript>14</subscript><superscript>42</superscript>Si<subscript>28</subscript> has been a contentious one. Fridmann et al., through studies of two-proton knockout reaction <subscript>16</subscript><superscript>44</superscript>S<subscript>28</subscript> → <subscript>14</subscript><superscript>42</superscript>Si<subscript>28</subscript>, presented strong evidence in support of magicity and sphericity of <subscript>14</subscript><superscript>42</superscript>Si<subscript>28</subscript>. However in complete conflict with this, Bastin et al., gave equally strong empirical evidence, to show that the N = 28 magicity had completely collapsed in <subscript>14</subscript><superscript>42</superscript>Si<subscript>28</subscript> to make it well deformed. The consensus at present though is in favour of the validity of the latter experiment. However, our QCD based theoretical model supports the result of Fridmann experiment. They had explored the amazing persistence of the unique exotic nucleus <subscript>14</subscript><superscript>42</superscript>Si<subscript>28</subscript> as a stable structure within the nucleus <subscript>20</subscript><superscript>48</superscript>Ca<subscript>28</subscript>; even after stripping off six-protons through the isotonic chain: <subscript>20</subscript><superscript>48</superscript>Ca<subscript>28</subscript> → <subscript>18</subscript><superscript>46</superscript>Ar<subscript>28</subscript> → <subscript>16</subscript><superscript>44</superscript>S<subscript>28</subscript> → <subscript>14</subscript><superscript>42</superscript>Si<subscript>28</subscript>. Thus it is the novel and unexpected stability of proton shell closure at Z=14 in <subscript>14</subscript><superscript>42</superscript>Si<subscript>28</subscript>, which is playing such a dominant role in ensuring its magicity, while the neutron magic number N = 28, goes into hiding or actually disappears. Recently, SAA has shown that the fusion experiment of a beam of halo nucleus <superscript>6</superscript>He with the target nucleus <superscript>238</superscript>U, actually provided strong evidence that the "core" of the halo nucleus has the structure of a tennis-ball (bubble) like nucleus, with a "hole" at the centre of its density distribution. This provides us with clear-cut support for our Quantum Chromodynamics based model of clusters of tritons in neutron-rich nuclei. Here we show that our QCD based model, provides support to Fridmann et al., showing that, <subscript>14</subscript><superscript>42</superscript>Si<subscript>28</subscript> has a spherically magic structure of 14 <subscript>1</subscript>³H<subscript>2</subscript> (14-tritons) with a tennis-ball (bubble) like structure with "hidden" N=28 neutrons. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00195596
- Volume :
- 58
- Issue :
- 5
- Database :
- Complementary Index
- Journal :
- Indian Journal of Pure & Applied Physics
- Publication Type :
- Academic Journal
- Accession number :
- 145224210