Back to Search
Start Over
Nonlinear Stochastic Optimal Control Using Piezoelectric Stack Inertial Actuator.
- Source :
- Shock & Vibration; 8/18/2020, p1-7, 7p
- Publication Year :
- 2020
-
Abstract
- An optimal control strategy for the random vibration reduction of nonlinear structures using piezoelectric stack inertial actuator is proposed. First, the dynamic model of the nonlinear structure considering the dynamics of a piezoelectric stack inertial actuator is established, and the motion equation of the coupled system is described by a quasi-non-integrable-Hamiltonian system. Then, using the stochastic averaging method, this quasi-non-integrable-Hamiltonian system is reduced to a one-dimensional averaged system for total energy. The optimal control law is determined by establishing and solving the dynamic programming equation. The proposed control law is analytical and can be fully executed by a piezoelectric stack inertial actuator. The responses of optimally controlled and uncontrolled systems are obtained by solving the Fokker–Planck–Kolmogorov (FPK) equation to evaluate the control effectiveness of the proposed strategy. Numerical results show that our proposed control strategy is effective for random vibration reduction of the nonlinear structures using piezoelectric stack inertial actuator, and the theoretical method is verified by comparing with the simulation results. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 10709622
- Database :
- Complementary Index
- Journal :
- Shock & Vibration
- Publication Type :
- Academic Journal
- Accession number :
- 145188080
- Full Text :
- https://doi.org/10.1155/2020/5372045