Back to Search Start Over

Nonlinear Stochastic Optimal Control Using Piezoelectric Stack Inertial Actuator.

Authors :
Lü, Q. F.
Wang, X. F.
Lu, K.
Huan, R. H.
Source :
Shock & Vibration; 8/18/2020, p1-7, 7p
Publication Year :
2020

Abstract

An optimal control strategy for the random vibration reduction of nonlinear structures using piezoelectric stack inertial actuator is proposed. First, the dynamic model of the nonlinear structure considering the dynamics of a piezoelectric stack inertial actuator is established, and the motion equation of the coupled system is described by a quasi-non-integrable-Hamiltonian system. Then, using the stochastic averaging method, this quasi-non-integrable-Hamiltonian system is reduced to a one-dimensional averaged system for total energy. The optimal control law is determined by establishing and solving the dynamic programming equation. The proposed control law is analytical and can be fully executed by a piezoelectric stack inertial actuator. The responses of optimally controlled and uncontrolled systems are obtained by solving the Fokker–Planck–Kolmogorov (FPK) equation to evaluate the control effectiveness of the proposed strategy. Numerical results show that our proposed control strategy is effective for random vibration reduction of the nonlinear structures using piezoelectric stack inertial actuator, and the theoretical method is verified by comparing with the simulation results. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10709622
Database :
Complementary Index
Journal :
Shock & Vibration
Publication Type :
Academic Journal
Accession number :
145188080
Full Text :
https://doi.org/10.1155/2020/5372045