Back to Search Start Over

Trodusquemine displaces protein misfolded oligomers from cell membranes and abrogates their cytotoxicity through a generic mechanism.

Authors :
Limbocker, Ryan
Mannini, Benedetta
Ruggeri, Francesco S.
Cascella, Roberta
Xu, Catherine K.
Perni, Michele
Chia, Sean
Chen, Serene W.
Habchi, Johnny
Bigi, Alessandra
Kreiser, Ryan P.
Wright, Aidan K.
Albright, J. Alex
Kartanas, Tadas
Kumita, Janet R.
Cremades, Nunilo
Zasloff, Michael
Cecchi, Cristina
Knowles, Tuomas P. J.
Chiti, Fabrizio
Source :
Communications Biology; 8/13/2020, Vol. 3 Issue 1, p1-10, 10p
Publication Year :
2020

Abstract

The onset and progression of numerous protein misfolding diseases are associated with the presence of oligomers formed during the aberrant aggregation of several different proteins, including amyloid-β (Aβ) in Alzheimer's disease and α-synuclein (αS) in Parkinson's disease. These small, soluble aggregates are currently major targets for drug discovery. In this study, we show that trodusquemine, a naturally-occurring aminosterol, markedly reduces the cytotoxicity of αS, Aβ and HypF-N oligomers to human neuroblastoma cells by displacing the oligomers from cell membranes in the absence of any substantial morphological and structural changes to the oligomers. These results indicate that the reduced toxicity results from a mechanism that is common to oligomers from different proteins, shed light on the origin of the toxicity of the most deleterious species associated with protein aggregation and suggest that aminosterols have the therapeutically-relevant potential to protect cells from the oligomer-induced cytotoxicity associated with numerous protein misfolding diseases. Limbocker et al. show that trodusquemine, an aminosterol, reduces the cytotoxicity of protein misfolded oligomers by displacing them from cell membranes in the absence of any overt structural/ morphological changes in them. This mechanism appears to be general, as they test it for oligomers of αS, Aβ and the model protein HypF-N to human neuroblastoma cells. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23993642
Volume :
3
Issue :
1
Database :
Complementary Index
Journal :
Communications Biology
Publication Type :
Academic Journal
Accession number :
145137206
Full Text :
https://doi.org/10.1038/s42003-020-01140-8