Back to Search Start Over

Mechanical behavior and phase change of alkali‐silica reaction products under hydrostatic compression.

Authors :
Geng, Guoqing
Shi, Zhenguo
Leemann, Andreas
Glazyrin, Konstantin
Kleppe, Annette
Daisenberger, Dominik
Churakov, Sergey
Lothenbach, Barbara
Wieland, Erich
Dähn, Rainer
Source :
Acta Crystallographica Section B: Structural Science, Crystal Engineering & Materials; Aug2020, Vol. 76 Issue 4, p674-682, 9p
Publication Year :
2020

Abstract

Alkali‐silica reaction (ASR) causes severe degradation of concrete. The mechanical property of the ASR product is fundamental to the multiscale modeling of concrete behavior over the long term. Despite years of study, there is a lack of consensus regarding the structure and elastic modulus of the ASR product. Here, ASR products from both degraded field infrastructures and laboratory synthesis were investigated using high‐pressure X‐ray diffraction. The results unveiled the multiphase and metastable nature of ASR products from the field. The dominant phase undergoes permanent phase change via collapsing of the interlayer region and in‐planar glide of the main layer, under pressure >2 GPa. The bulk moduli of the low‐ and high‐pressure polymorphs are 27±3 and 46±3 GPa, respectively. The laboratory‐synthesized sample and the minor phase in the field samples undergo no changes of phase during compression. Their bulk moduli are 35±2 and 76±4 GPa, respectively. The results provide the first atomistic‐scale measurement of the mechanical property of crystalline ASR products. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20525192
Volume :
76
Issue :
4
Database :
Complementary Index
Journal :
Acta Crystallographica Section B: Structural Science, Crystal Engineering & Materials
Publication Type :
Academic Journal
Accession number :
145037197
Full Text :
https://doi.org/10.1107/S205252062000846X