Back to Search
Start Over
Baicalein Attenuates Pyroptosis and Endoplasmic Reticulum Stress Following Spinal Cord Ischemia-Reperfusion Injury via Autophagy Enhancement.
- Source :
- Frontiers in Pharmacology; 7/30/2020, Vol. 11, pN.PAG-N.PAG, 12p
- Publication Year :
- 2020
-
Abstract
- Background: Spinal cord ischemia-reperfusion injury (SCIRI) is the main complication after the repair of a complex thoracoabdominal aortic aneurysm. Many clinical treatments are not ideal due to the complex pathophysiological process of this injury. Baicalein (BA), a component derived from the roots of the herb Scutellaria baicalensis , may contribute to the successful treatment of ischemia/reperfusion injury. Purpose: In the present study, the effects of BA on spinal cord ischemia-reperfusion injury and the underlying mechanisms were assessed. Materials and Methods: Spinal cord ischemia was induced in C57BL/6 mice by blocking the aortic arch. Fifty-five mice were then randomly divided into four groups: Sham, SCIR+Vehicle, SCIR+BA, and SCIR+BA +3MA groups. At 0 and 24 h pre-SCIRI and at 24 h and 7 days post-SCIRI, evaluations with the Basso mouse scale (BMS) were performed. On postoperative 24 h, the spinal cord was harvested to assess pyroptosis, endoplasmic reticulum stress mediated apoptosis and autophagy. Results: BA enhanced the functional recovery of spinal cord ischemia-reperfusion injury. In addition, BA attenuated pyroptosis, alleviated endoplasmic reticulum stress-mediated apoptosis, and activated autophagy. However, the effects of BA on the functional recovery of SCIRI, pyroptosis and endoplasmic reticulum stress-mediated apoptosis were reversed by the inhibition of autophagy. Conclusions: In general, our findings revealed that BA enhances the functional recovery of spinal cord ischemia-reperfusion injury by dampening pyroptosis and alleviating endoplasmic reticulum stress-mediated apoptosis, which are mediated by the activation of autophagy. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 16639812
- Volume :
- 11
- Database :
- Complementary Index
- Journal :
- Frontiers in Pharmacology
- Publication Type :
- Academic Journal
- Accession number :
- 144872778
- Full Text :
- https://doi.org/10.3389/fphar.2020.01076