Back to Search Start Over

Testing and controlling for horizontal pleiotropy with probabilistic Mendelian randomization in transcriptome-wide association studies.

Authors :
Yuan, Zhongshang
Zhu, Huanhuan
Zeng, Ping
Yang, Sheng
Sun, Shiquan
Yang, Can
Liu, Jin
Zhou, Xiang
Source :
Nature Communications; 7/31/2020, Vol. 11 Issue 1, p1-14, 14p
Publication Year :
2020

Abstract

Integrating results from genome-wide association studies (GWASs) and gene expression studies through transcriptome-wide association study (TWAS) has the potential to shed light on the causal molecular mechanisms underlying disease etiology. Here, we present a probabilistic Mendelian randomization (MR) method, PMR-Egger, for TWAS applications. PMR-Egger relies on a MR likelihood framework that unifies many existing TWAS and MR methods, accommodates multiple correlated instruments, tests the causal effect of gene on trait in the presence of horizontal pleiotropy, and is scalable to hundreds of thousands of individuals. In simulations, PMR-Egger provides calibrated type I error control for causal effect testing in the presence of horizontal pleiotropic effects, is reasonably robust under various types of model misspecifications, is more powerful than existing TWAS/MR approaches, and can directly test for horizontal pleiotropy. We illustrate the benefits of PMR-Egger in applications to 39 diseases and complex traits obtained from three GWASs including the UK Biobank. Transcriptome-wide association studies integrate GWAS and transcriptome data to examine the molecular mechanisms underlying disease etiology. Here the authors present PMR-Egger, a powerful TWAS method based on probabilistic Mendelian Randomization. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
11
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
144870340
Full Text :
https://doi.org/10.1038/s41467-020-17668-6