Back to Search Start Over

Reduced ice mass loss and three-dimensional viscoelastic deformation in northern Antarctic Peninsula inferred from GPS.

Authors :
Samrat, Nahidul Hoque
King, Matt A
Watson, Christopher
Hooper, Andrew
Chen, Xianyao
Barletta, Valentina R
Bordoni, Andrea
Source :
Geophysical Journal International; Aug2020, Vol. 222 Issue 2, p1013-1022, 10p
Publication Year :
2020

Abstract

We consider the viscoelastic rheology of the solid Earth under the Antarctic Peninsula due to ice mass loss that commenced after the breakup of the Larsen-B ice shelf. We extend the previous analysis of nearby continuous GPS time-series to include five additional years and the additional consideration of the horizontal components of deformation. They show strong uplift from ∼2002 to 2011 followed by reduced uplift rates to 2018. Modelling the GPS-derived uplift as a viscoelastic response to ongoing regional ice unloading from a new ice model confirms earlier estimates of low upper-mantle viscosities of ∼0.3–3 × 10<superscript>18</superscript> Pa s in this region but allows a wide range of elastic lithosphere thickness. The observed and modelled north coordinate component shows little nonlinear variation due to the location of ice mass change to the east of the GPS sites. However, comparison of the observed and modelled east coordinate component constrains the upper-mantle viscosity to be less than ∼9 × 10<superscript>18</superscript> Pa s, consistent with the viscosity range suggested by the uplift rates alone and providing important, largely independent, confirmation of that result. Our horizontal analysis showed only marginal sensitivity to modelled lithospheric thickness. The results for the horizontal components are sensitive to the adopted plate rotation model, with the estimate based on ITRF2014 suggesting that the sum of residual plate motion and pre-2002 glacial isostatic adjustment is likely less than ∼±0.5 mm yr<superscript>−1</superscript> in the east component. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0956540X
Volume :
222
Issue :
2
Database :
Complementary Index
Journal :
Geophysical Journal International
Publication Type :
Academic Journal
Accession number :
144477030
Full Text :
https://doi.org/10.1093/gji/ggaa229