Back to Search Start Over

Evolution-inspired design of multicolored photoswitches from a single cyanobacteriochrome scaffold.

Authors :
Keiji Fushimi
Masumi Hasegawa
Takeru Ito
Rockwell, Nathan C.
Gen Enomoto
Ni-Ni-Win
Lagarias, J. Clark
Masahiko Ikeuchi
Rei Narikawa
Source :
Proceedings of the National Academy of Sciences of the United States of America; 7/7/2020, Vol. 117 Issue 27, p15573-15580, 8p
Publication Year :
2020

Abstract

Cyanobacteriochromes (CBCRs) are small, bistable linear tetrapyrrole (bilin)-binding light sensors which are typically found as modular components in multidomain cyanobacterial signaling proteins. The CBCR family has been categorized into many lineages that roughly correlate with their spectral diversity, but CBCRs possessing a conserved DXCF motif are found in multiple lineages. DXCF CBCRs typically possess two conserved Cys residues: a first Cys that remains ligated to the bilin chromophore and a second Cys found in the DXCF motif. The second Cys often forms a second thioether linkage, providing a mechanism to sense blue and violet light. DXCF CBCRs have been described with blue/green, blue/orange, blue/teal, and green/teal photocycles, and the molecular basis for some of this spectral diversity has been well established. We here characterize AM1_1499g1, an atypical DXCF CBCR that lacks the second cysteine residue and exhibits an orange/green photocycle. Based on prior studies of CBCR spectral tuning, we have successfully engineered seven AM1_1499g1 variants that exhibit robust yellow/teal, green/teal, blue/teal, orange/yellow, yellow/green, green/green, and blue/green photocycles. The remarkable spectral diversity generated by modification of a single CBCR provides a good template for multiplexing synthetic photobiology systems within the same cellular context, thereby bypassing the timeconsuming empirical optimization process needed for multiple probes with different protein scaffolds. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00278424
Volume :
117
Issue :
27
Database :
Complementary Index
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
144433065
Full Text :
https://doi.org/10.1073/pnas.2004273117