Back to Search
Start Over
Recommending Learning Objects with Arguments and Explanations.
- Source :
- Applied Sciences (2076-3417); May2020, Vol. 10 Issue 10, p3341, 18p
- Publication Year :
- 2020
-
Abstract
- The massive presence of online learning resources leads many students to have more information than they can consume efficiently. Therefore, students do not always find adaptive learning material for their needs and preferences. In this paper, we present a Conversational Educational Recommender System (C-ERS), which helps students in the process of finding the more appropriated learning resources considering their learning objectives and profile. The recommendation process is based on an argumentation-based approach that selects the learning objects that allow a greater number of arguments to be generated to justify their suitability. Our system includes a simple and intuitive communication interface with the user that provides an explanation to any recommendation. This allows the user to interact with the system and accept or reject the recommendations, providing reasons for such behavior. In this way, the user is able to inspect the system's operation and understand the recommendations, while the system is able to elicit the actual preferences of the user. The system has been tested online with a real group of undergraduate students in the Universidad Nacional de Colombia, showing promising results. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20763417
- Volume :
- 10
- Issue :
- 10
- Database :
- Complementary Index
- Journal :
- Applied Sciences (2076-3417)
- Publication Type :
- Academic Journal
- Accession number :
- 144301714
- Full Text :
- https://doi.org/10.3390/app10103341