Back to Search Start Over

Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts.

Authors :
Atabaki-Pasdar, Naeimeh
Ohlsson, Mattias
Viñuela, Ana
Frau, Francesca
Pomares-Millan, Hugo
Haid, Mark
Jones, Angus G.
Thomas, E. Louise
Koivula, Robert W.
Kurbasic, Azra
Mutie, Pascal M.
Fitipaldi, Hugo
Fernandez, Juan
Dawed, Adem Y.
Giordano, Giuseppe N.
Forgie, Ian M.
McDonald, Timothy J.
Rutters, Femke
Cederberg, Henna
Chabanova, Elizaveta
Source :
PLoS Medicine; 6/19/2020, Vol. 17 Issue 6, p1-27, 27p, 1 Diagram, 2 Charts, 5 Graphs
Publication Year :
2020

Abstract

Background: Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health complications in individuals with and without type 2 diabetes (T2D). Early diagnosis of NAFLD is important, as this can help prevent irreversible damage to the liver and, ultimately, hepatocellular carcinomas. We sought to expand etiological understanding and develop a diagnostic tool for NAFLD using machine learning. Methods and findings: We utilized the baseline data from IMI DIRECT, a multicenter prospective cohort study of 3,029 European-ancestry adults recently diagnosed with T2D (n = 795) or at high risk of developing the disease (n = 2,234). Multi-omics (genetic, transcriptomic, proteomic, and metabolomic) and clinical (liver enzymes and other serological biomarkers, anthropometry, measures of beta-cell function, insulin sensitivity, and lifestyle) data comprised the key input variables. The models were trained on MRI-image-derived liver fat content (<5% or ≥5%) available for 1,514 participants. We applied LASSO (least absolute shrinkage and selection operator) to select features from the different layers of omics data and random forest analysis to develop the models. The prediction models included clinical and omics variables separately or in combination. A model including all omics and clinical variables yielded a cross-validated receiver operating characteristic area under the curve (ROCAUC) of 0.84 (95% CI 0.82, 0.86; p < 0.001), which compared with a ROCAUC of 0.82 (95% CI 0.81, 0.83; p < 0.001) for a model including 9 clinically accessible variables. The IMI DIRECT prediction models outperformed existing noninvasive NAFLD prediction tools. One limitation is that these analyses were performed in adults of European ancestry residing in northern Europe, and it is unknown how well these findings will translate to people of other ancestries and exposed to environmental risk factors that differ from those of the present cohort. Another key limitation of this study is that the prediction was done on a binary outcome of liver fat quantity (<5% or ≥5%) rather than a continuous one. Conclusions: In this study, we developed several models with different combinations of clinical and omics data and identified biological features that appear to be associated with liver fat accumulation. In general, the clinical variables showed better prediction ability than the complex omics variables. However, the combination of omics and clinical variables yielded the highest accuracy. We have incorporated the developed clinical models into a web interface (see: https://www.predictliverfat.org/) and made it available to the community. Trial registration: ClinicalTrials.gov NCT03814915. In a modelling study, Naeimeh Atabaki-Pasdar and colleagues apply machine learning techniques to develop models to predict non-alcoholic fatty liver disease diagnosis using multi-omic and clinical data from individuals with and without type 2 diabetes in the IMI DIRECT cohorts. Author summary: Why was this study done?: Globally, about 1 in 4 adults have non-alcoholic fatty liver disease (NAFLD), which adversely affects energy homeostasis (in particular blood glucose concentrations), blood detoxification, drug metabolism, and food digestion. Although numerous noninvasive tests to detect NAFLD exist, these typically include inaccurate blood-marker tests or expensive imaging methods. The purpose of this work was to develop accurate noninvasive methods to aid in the clinical prediction of NAFLD. What did the researchers do and find?: The analyses applied machine learning methods to data from the deep-phenotyped IMI DIRECT cohorts (n = 1,514) to identify sets of highly informative variables for the prediction of NAFLD. The criterion measure was liver fat quantified from MRI. We developed a total of 18 prediction models that ranged from very inexpensive models of modest accuracy to more expensive biochemistry- and/or omics-based models with high accuracy. We found that models using measures commonly collected in either clinical settings or research studies proved adequate for the prediction of NAFLD. The addition of detailed omics data significantly improved the predictive utility of these models. We also found that of all omics markers, proteomic markers yielded the highest predictive accuracy when appropriately combined. What do these findings mean?: We envisage that these new approaches to predicting fatty liver may be of clinical value when screening at-risk populations for NAFLD. The identification of specific molecular features that underlie the development of NAFLD provides novel insights into the disease's etiology, which may lead to the development of new treatments. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15491277
Volume :
17
Issue :
6
Database :
Complementary Index
Journal :
PLoS Medicine
Publication Type :
Academic Journal
Accession number :
143846480
Full Text :
https://doi.org/10.1371/journal.pmed.1003149