Back to Search Start Over

Vertical GaN-on-GaN Schottky Diodes as α-Particle Radiation Sensors.

Authors :
Sandupatla, Abhinay
Arulkumaran, Subramaniam
Ing, Ng Geok
Nitta, Shugo
Kennedy, John
Amano, Hiroshi
Source :
Micromachines; May2020, Vol. 11 Issue 5, p519-519, 1p
Publication Year :
2020

Abstract

Among the different semiconductors, GaN provides advantages over Si, SiC and GaAs in radiation hardness, resulting in researchers exploring the development of GaN-based radiation sensors to be used in particle physics, astronomic and nuclear science applications. Several reports have demonstrated the usefulness of GaN as an α-particle detector. Work in developing GaN-based radiation sensors are still evolving and GaN sensors have successfully detected α-particles, neutrons, ultraviolet rays, x-rays, electrons and γ-rays. This review elaborates on the design of a good radiation detector along with the state-of-the-art α-particle detectors using GaN. Successful improvement in the growth of GaN drift layers (DL) with 2 order of magnitude lower in charge carrier density (CCD) (7.6 × 10<superscript>14</superscript>/cm<superscript>3</superscript>) on low threading dislocation density (3.1 × 10<superscript>6</superscript>/cm<superscript>2</superscript>) hydride vapor phase epitaxy (HVPE) grown free-standing GaN substrate, which helped ~3 orders of magnitude lower reverse leakage current (I<subscript>R</subscript>) with 3-times increase of reverse breakdown voltages. The highest reverse breakdown voltage of −2400 V was also realized from Schottky barrier diodes (SBDs) on a free-standing GaN substrate with 30 μm DL. The formation of thick depletion width (DW) with low CCD resulted in improving high-energy (5.48 MeV) α-particle detection with the charge collection efficiency (CCE) of 62% even at lower bias voltages (−20 V). The detectors also detected 5.48 MeV α-particle with CCE of 100% from SBDs with 30-μm DL at −750 V. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2072666X
Volume :
11
Issue :
5
Database :
Complementary Index
Journal :
Micromachines
Publication Type :
Academic Journal
Accession number :
143762752
Full Text :
https://doi.org/10.3390/mi11050519