Back to Search Start Over

Identification of the cDNA Encoding the Growth Hormone Receptor (GHR) and the Regulation of GHR and IGF-I Gene Expression by Nutritional Status in Reeves' Turtle (Chinemys reevesii).

Authors :
Zhu, Wenlu
He, Yuhui
Ruan, Zhuohao
Zhang, Xiquan
Liao, Liangyuan
Gao, Yicong
Lin, Nani
Chen, Xiancan
Liang, Rui
Liu, Wen-sheng
Source :
Frontiers in Genetics; 6/9/2020, Vol. 11, p1-14, 14p
Publication Year :
2020

Abstract

Chinemys reevesii (Reeves' turtle) is a slow-growing reptile that is distributed widely across China. Prior to this study, the cDNA sequence of the growth hormone receptor (GHR) in the Reeve's turtle, or how periods of starvation might influence the gene expression of GHR and insulin-like growth factor I (IGF-I) in this species, were unknown. Here, we identified the full-length sequence of the cDNA encoding GHR in Reeves' turtle by using RT-PCR and RACE. The full-length GHR cDNA was identified to be 3936 base-pairs in length, with a 1848 base-pair open reading frame (ORF) that encodes a 615 amino acid protein. Analysis showed that GHR mRNA was detectable in a wide range of tissues; the highest and lowest levels of expression were detected in the liver and the gonad, respectively. IGF-I was also expressed in a range of tissues, but not in the gonad; the highest levels of IGF-I expression were detected in the liver. After 4 weeks of fasting, the expression levels of GHR and IGF-I in the liver had decreased significantly; however, these gradually returned to normal after refeeding. We report the first cloned cDNA sequence for the GHR gene in the Reeve's turtle. Our findings provide a foundation from which to investigate the specific function of the GHR in Reeve's turtle, and serve as a reference for studying the effects of different nutrient levels on GHR expression in this species. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16648021
Volume :
11
Database :
Complementary Index
Journal :
Frontiers in Genetics
Publication Type :
Academic Journal
Accession number :
143699036
Full Text :
https://doi.org/10.3389/fgene.2020.00587