Back to Search Start Over

Core-Shell Encapsulation of Lipophilic Substance in Jelly Fig (Ficus awkeotsang Makino) Polysaccharides Using an Inexpensive Acrylic-Based Millifluidic Device.

Authors :
Ponrasu, Thangavel
Yang, Ren-Fang
Chou, Tzung-Han
Wu, Jia-Jiuan
Cheng, Yu-Shen
Source :
Applied Biochemistry & Biotechnology; May2020, Vol. 191 Issue 1, p360-375, 16p
Publication Year :
2020

Abstract

The polysaccharides extracted from the achenes of jelly fig, Ficus awkeotsang Makino, were mainly composed of low methyl pectin and used as a novel shell material for encapsulating lipophilic bioactives in the core of microcapsule. The polysaccharide microcapsules with oil core were prepared using a novel acrylic-based millifluidic device developed in this study. To investigate the physiochemical properties of and find the suitable formula of polysaccharide shells, the films casted with jelly fig polysaccharide were thoroughly characterized. For the preparation of microcapsules, the millifluidic device was optimized by controlling the flow rate to obtain uniform spherical shape with a core diameter of 1.4−1.9 mm and the outer diameter of 2.1–2.8 mm. The encapsulation efficiency was around 90%, and the microcapsules displayed a clear boundary between the polysaccharide shell and oil core. Encapsulation of curcumin in the microcapsules was prepared to test the applicability of the device and processes developed in this study, and the results showed that the microencapsulation could enhance the stability of curcumin against external environment. Overall, the results suggested that the jelly fig polysaccharides and the developed millifluidic device can be useful for the preparation of core-shell microcapsules for encapsulation of lipophilic bioactives. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02732289
Volume :
191
Issue :
1
Database :
Complementary Index
Journal :
Applied Biochemistry & Biotechnology
Publication Type :
Academic Journal
Accession number :
143661010
Full Text :
https://doi.org/10.1007/s12010-019-03209-5